Heading perception depends on time-varying evolution of optic flow

Aim: Is instantaneous optic flow sufficient for heading perception?

Background

- Optic flow field: retinal image motion caused by an observer’s movement through their environment.
- Rotation problem: heading direction corresponds to singularity for pure translation, but not for translation + rotation.

Experimental protocol

- Task: 2-AFC heading discrimination, relative to straight ahead.

Heading bias

- Heading bias much larger for phase motion than envelope motion.
- Heading bias: point of subjective equality of psychometric function.
- Heading discrimination threshold: 1 / slope of function.

Discrimination threshold

- Heading perception strongly biased for phase motion, but nearly veridical for time-varying phase motion.
- Little difference in bias between first and last flow fields; i.e., bias depends on rotation velocity, not singularity.

Null model: an upper bound on heading bias

- Null model computes heading as singularity location, a biased strategy for translation + rotation.
- Observers interpret rotation as additional translation when only given access to instantaneous optic flow.

Conclusion: Instantaneous optic flow is insufficient. Time-varying optic flow is needed for accurate and precise heading perception.

Email: charlie.burlingham@nyu.edu

Support: NIH 1F32 EY021758-01 to C.S.B. through NYU, NDSEG (to C.S.B.). Thanks to Ianat Kuperwajs, Davis Glasser, Eli Merriam, Shannon Locke, Emmanouil Protonotarios, Mike Landy, and Eero Simoncelli.